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Abstract

Over the last few years, RNA-seq has been used to study alterations in alternative splicing related to several diseases.
Bioinformatics workflows used to perform these studies can be divided into two groups, those finding changes in the abso-
lute isoform expression and those studying differential splicing. Many computational methods for transcriptomics analysis
have been developed, evaluated and compared; however, there are not enough reports of systematic and objective assess-
ment of processing pipelines as a whole. Moreover, comparative studies have been performed considering separately the
changes in absolute or relative isoform expression levels. Consequently, no consensus exists about the best practices and
appropriate workflows to analyse alternative and differential splicing. To assist the adequate pipeline choice, we present
here a benchmarking of nine commonly used workflows to detect differential isoform expression and splicing. We eval-
uated the workflows performance over different experimental scenarios where changes in absolute and relative isoform
expression occurred simultaneously. In addition, the effect of the number of isoforms per gene, and the magnitude of
the expression change over pipeline performances were also evaluated. Our results suggest that workflow performance is
influenced by the number of replicates per condition and the conditions heterogeneity. In general, workflows based on
DESeq2, DEXSeq, Limma and NOISeq performed well over a wide range of transcriptomics experiments. In particular,
we suggest the use of workflows based on Limma when high precision is required, and DESeq2 and DEXseq pipelines to
prioritize sensitivity. When several replicates per condition are available, NOISeq and Limma pipelines are indicated.
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Introduction

In high eukaryotes, many genes can produce multiple transcripts
through alternative splicing (AS), a post-transcriptional regulatory

mechanism responsible for the functional complexity and protein
diversity made from a small number of genes [1, 2]. Splicing pat-
terns are constantly changing, allowing organisms to respond to
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modifications in their environment [3, 4]. For instance, more than
90% of human genes are naturally alternatively spliced and mis-
regulations of AS causing changes in absolute or relative isoform
expression have been related to several diseases, including cancer
[5]. Hence, the determination of changes in splicing patterns is an
important issue in basic and applied biomedical research. Today,
RNA-seq is the most widely used technique to analyse transcrip-
tome expression dynamics, including AS [6].

In the analysis of AS, two types of changes in isoform expres-
sion can be envisioned: differential isoform expression (DIE) and
differential splicing (DS). DIE refers to a change in the absolute ex-
pression of an isoform, whereas DS is related to changes in isoform
proportions [7]. In both cases, the transcriptomic analysis is based
on quantification at different levels (i.e. isoform, exon) than gene
expression [6]. Several works have been published comparing and
evaluating isoform quantification methods using synthetic and/or
real RNA-seq data [6–9]. Moreover, numerous differential expres-
sion (DE) analysis tools exist for the study of DIE and DS, generally
in a separate way [10–13]. In general, specific methods have been
developed for DS analysis while DE methods at the gene level have
been applied to the study of DIE [10]. Although those methods are
well known in DE analysis at the gene level, their performances
over isoform expression data have not been deeply evaluated.
Complementarily, while some studies comparing methods to de-
tect changes in AS have been published, they are mainly based on
a descriptive characterization of method features [1, 7, 14–15].
Hence, a systematic evaluation of workflow performance is needed
to further assist the choice of the appropriate set of tools for AS
among a plethora of available methods. In this sense, the most
complete reported work compares eight popular software tools
using both simulated and real RNA-seq data in several scenarios
[16]. However, this work focuses only on DS changes without con-
sideration of DIE, or DIE and DS occurring simultaneously, and
only uses plant data. Thus, there is no clear consensus about the
best practices or workflows that should be used or combined to
obtain a comprehensive assessment of AS changes in human
RNA-seq data involving both DIE and DS together.

Here we present a systematic evaluation and comparison of
nine pipelines for the detection of DIE and DS events. In particu-
lar, the evaluated DIE workflows were based on isoform expres-
sion profiles and used five of the most popular tools: Cuffdiff2
[11], and the R packages: DESeq2 [17], EBSeq [10], Limma [18] and
NOISeq [19]. On the other hand, the DS-evaluated pipelines were
based on Cuffdiff2, and the SplicingCompass [12], DEXSeq [13]
and Limma R packages. The study was performed using both
real and synthetic RNA-seq data sets. The evaluation of work-
flows performance is based on simulated experiments where
isoform expression profiles were modified and controlled to
simulate AS changes based on a real human RNA-seq experi-
ment. Several experimental scenarios, varying the number of
genes simulated as differentially expressed, as well as, the num-
ber of replicates per conditions were simulated. For pipelines
comparison, suitable performance measures were obtained.
General and practical guidelines based on the number of repli-
cates, sensitivity, precision and percentages of true positives are
provided in order to aid scientists in the selection of the most
appropriate workflows for their data and analysis goals.

Methods
Definition of expression changes at the isoform level

Let us suppose that there are three experimental conditions, A,
B and C, and a gene g having two isoforms, gI and gII, having the

expression values listed in Table 1. The comparison of A and B
conditions reveals changes in gI and gII absolute expression,
without modifications in their proportions, which is an example
of DIE. Note that DIE refers to absolute changes in isoform ex-
pression and hence DIE methods use count matrices at the tran-
script level. When conditions A and C are compared, significant
changes in isoform proportions involving small changes in ab-
solute expressions are present. This comparison reveals alter-
ations in the AS mechanism in C with respect to A condition, a
phenomenon known as DS. The changes in the proportion of
the isoforms from the same gene are usually evaluated by
measuring the changes in the gene’s exon usage.

Workflows for DE analysis

Seven commonly used methods for DE analysis based on differ-
ent approaches were chosen to analyse DIE and DS. The se-
lected methods were: EBSeq, DESeq2, NOISeq, SplicingCompass,
Limma, DEXSeq and Cuffdiff2. Specific pipelines for them were
designed (Figure 1). The evaluated workflows were called:
Cufflinks, DESeq2, EBSeq, Limma and NOISeq, in the case of DIE
analysis (solid arrows), and CufflinksDS, DEXSeq, LimmaDS and
SplicingCompass, for DS study (dashed arrows). It is worth
nothing, that only Cuffdiff2 and Limma DE tools are able to per-
form the analysis of both DIE and DS.

DIE workflows
This group of pipelines takes as input data isoform expression
levels obtained by quantification methods based on probabilis-
tic isoform resolution models. These models try to assign reads
or fragments to the isoforms they came from. To do this, they
model the uncertainty derived from multiple isoforms having
overlapping sequences [16]. In this work, RSEM [20] was used as
a quantification tool to generate isoform count matrices from
reads aligned against the human reference transcriptome using
the Bowtie tool [21], as suggested by Teng et al. and Liu et al. [8, 16].
To evaluate DIE, four methods were used i.e. DESeq2, EBSeq,
Limma and NOISeq, which are R packages that accept count data
at isoform level. EBSeq and DESeq2 assume that the raw expres-
sion counts follow a negative binomial (NB) distribution, whereas
Limma assumes that the logarithmic transformation of expres-
sion counts follows a normal distribution. To infer DE changes
between experimental conditions, EBSeq uses a Bayesian hier-
archical model [10], while DESeq2 combines empirical Bayes
shrinkage with generalized linear model estimations to obtain
model coefficients and then uses the Wald statistic [17]. The voom

transformation [22] applies a generalized least squares approach
by modelling the mean–variance relationship with precision

Table 1. Illustration of changes in absolute and relative isoform ex-
pression occurred across three experimental conditions. The com-
parison of conditions A and B reflects the occurrence of differential
absolute expression, keeping relative isoform proportions. The com-
parison of conditions B and C reflects alterations in the AS mechan-
ism causing significant changes in isoform proportions

Gene Isoform Expression in A Expression in B Expression in C

Abs Rel (%) Abs Rel (%) Abs Rel (%)

g gI 10 66.67 20 66.67 20 80
gII 5 33.33 10 33.33 5 20

Abs, Absolute expression value; Rel, relative expression value.
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weights, allowing the use of the classical eBayes Limma method
to detect the isoform expression changes [18]. The three methods
return a P-value adjusted to control the false discovery rate (FDR),
used here to call differentially expressed isoforms. The
NOISeqbio tool, from the NOISeq package, is a non-parametric
and data-adaptive method that uses fold-changes and absolute
expression differences between the experimental conditions to
obtain one statistic per isoform. This method performs a permu-
tation step to obtain the noise distribution, against which the iso-
form statistics will be compared [19]. NOISeqbio returns for each
isoform the probability of being differentially expressed (Pde) and
the adjusted P-value is 1�Pde.

DS workflows
In the case of DS workflows, the analysis is performed over ex-
pression matrices at several levels obtained from alignments
against the reference genome. The gapped aligner TopHat2 [23]
was used to do this mapping. The evaluated DS methods were
Cuffdiff2 and three R packages: SplicingCompass, DEXSeq and
Limma. The coverageBed tool [24] was used to obtain expression
matrices for SplicingCompass, applying a union transcript model
for each gene. With this information, SplicingCompass constructs
vectors of exon and junction counts for each gene and sample,
then calculates pairwise geometric angles between two samples
and uses a t-test to compare geometric angles [12]. DEXSeq is
based on NB generalized linear models [13], like DESeq2. Count
matrices at exon level for DEXSeq and Limma packages were ob-
tained using the python script provided by the DEXSeq package,
disabling the aggregate options, as suggested by Soneson et al. [7].
DEXSeq and Limma models incorporate an interaction term
between the condition and the exon identifier to evaluate
changes in the proportion of that exon within a gene and between
conditions. The initSigGenesFromResults (SplicingCompas),
perGeneQValue (DEXSeq) and diffSplice (Limma) functions
were used to compute adjusted P-values per gene.

The CþþCufflinks2 program was used to calculate the iso-
form expression values as fragments per kilobase million

(FPKM) from reads aligned to genome sequences [11, 25]. Then,
Cuffdiff2 performed DE analysis at isoform and splicing levels,
generating the output files of the two workflows: Cufflinks (DIE
case) and CufflinksDS (DS case).

In all workflows, the Ensembl hg19/GRCh37 (v.75) human refer-
ence was used and significant isoform/gene changes were identi-
fied using an adjusted p-value threshold of 0.05. The program
versions, as well as all the scripts used in this study, are available
in Supplementary Material, as well as in the project GitHub reposi-
tory (https://github.com/gamerino/benchmarkingDiffExprAndSpl).

RNA-seq data sets

A replicated human prostate cancer RNA-seq data set
(GSE22260; [26]) was used. This data set consists of 30 samples,
10 from normal tissue (control, condition-C) and 20 from pros-
tate carcinoma (tumour, condition-T), sequenced using the
Illumina GAII platform with a pair-end protocol. In particular,
10 T samples are matched with the C samples. In order to
avoid subject correlation, these 10 samples were discarded.
In addition, samples were tagged as outlier samples by our
quality control pipeline [27] and discarded to finally keep
16 samples, 8 per condition, that were then used to evaluate
pipelines on a real data set and to feed the simulator.

The generated synthetic data sets corresponded to three pos-
sible experimental scenarios with balanced design (S1, S2 and S3)
combining DIE and DS events. The S1 and S2 scenarios involved
eight non-matched samples, four per each condition. In S1, 5% of
total genes were simulated to have expression differences
(DIE/DS); whereas, S2 had 10% of changing genes, incrementing
the between-conditions heterogeneity. The S3 scenario considered
the effect of a different number of replicates per condition, involv-
ing 16 samples, eight for each condition, with 10% of differentially
expressed genes, the same as S2. A simulation procedure, shown
in Figure 2, was designed to obtain raw sequencing reads for each
subject with controlled DIE and DS. The simulation was based on
the rsem-simulate-reads tool from RSEM, which takes a

Figure 1. Schema of the nine pipelines evaluated on this work. Five workflows to evaluate differential isoform expression (DIE, solid arrows) and four to analyse differ-

ential splicing (DS, dashed arrows) were included. Pipelines were designed following the author’s recommendations to evaluate case–control experiments. All the

workflows take as input the sequencing reads and generate a list of isoforms (DIE methods) or genes (DS methods) with significant changes.
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customized isoform expression profile and model parameters,
computed from a real RNA-seq data set, to generate synthetic
sequencing reads. The implemented procedure consisted of three
steps. In step one, each real sample was aligned against the refer-
ence transcriptome and, isoform expression profiles together with
RNA-seq model parameters were obtained. In the second step, the
expression matrix was pre-processed to exclude low-expressed
genes (zero counts in at least one replicate of C and T). Then, a set
of well-expressed genes (20 counts per million in at least one repli-
cate of C) were randomly chosen to simulate DIE/DS. The expres-
sion counts for the i-th isoform of the g-th gene from the k-th
condition were modelled by a NB distribution, yigk � NB(migk, higk).
The sample mean (migk) and shape (higk) for the NB distribution
were computed over condition C and taken as a reference to com-
pute the simulated parameters for both C and T conditions, incor-
porating DIE/DS in the group of genes to be simulated as
differentially expressed. In the third step, the isoform counts for
each replicate were generated from NB distributions with the
modified mean and shape parameters, obtaining the simulation
expression profiles. Finally, transcripts per million for each sample
were computed and used to call the rsem-simulate-reads func-
tion to generate simulated raw reads. In order to provide statistical
power to evaluate workflows performance, the third step of the
simulation pipeline was run 10 times to obtain replications of
each scenario keeping the same differentially expressed genes
and NB parameters.

Since DIE and DS occur simultaneously, both cases were
jointly simulated (see Table 2). The set of genes selected to be
differentially expressed was divided into four subsets: DE, DIE,
DS and DIEDS. For the DIE and DE groups, changes in the ex-
pression of all isoforms of the gene were simulated, without
modification of isoform proportions. The DIE group included
genes having more than one annotated isoform; whereas, the
DE group involved genes having only one annotated transcript.
For the DS group, changes in isoform proportion were simu-
lated, without modifications of the overall gene expression. For
each gene, the proportion of the most expressed isoform (major
isoform) was controlled and the remaining proportions were

equally distributed along their other expressed isoforms.
Finally, for the DIEDS group, the simultaneous occurrence of
DIE and DS was simulated. Even though the DS occurrence
could derive in DIE, we would include this group where we con-
trol the occurence of DIE and DS. More detailed information
about simulation groups, subgroups and the computation of
simulated profiles can be found in the Supplementary Material.

Performance evaluation

Commonly used performance measures were computed to
evaluate workflows results at 10 simulations from each scenario
[28]. The result of each workflow was either a list of significant

Figure 2. Simulation procedure designed to generate the RNA-seq data sets used for evaluation of workflows. The procedure was divided into three steps. The first step

was run once for each sample and it started by aligning reads to the reference. Next, alignments were processed to obtain the real isoform expression profiles and

RNA-seq model parameters, for each replicate. In the second step, the mean and shape NB parameters for each isoform in each experimental condition were calculated

and modified to simulate expression changes. This step was run once for each scenario. The third step was run 10 times for each scenario and consisted in generating

the simulated isoform expression profiles using a NB distribution with the modified parameters. Finally, the customized expression matrix and the RNA-seq model,

estimated before, were used by RSEM to obtain the simulated sequencing reads for each sample.

Table 2. Simulation groups and subgroups. Groups were defined ac-
cording to the combination of changes in absolute and relative ex-
pression of gene isoforms between the two experimental conditions

Group Fold-change
at isoform
expression

Change in the
proportion of

the major isoform

Simulation
subgroup

DE 2 No change DE-2
4 No change DE-4

DIE 2 No change DIE-2
3 No change DIE-3
4 No change DIE-4
5 No change DIE-5

DS No change 0–0.7 DS-0-0.7
No change 0.1–0.4 DS-0.1-0.4
No change 0.3–0.6 DS-0.3-0.6
No change 0.5–0.8 DS-0.5-0.8

DIEDS 0.5 0.8–0.5 DIEDS-0.5-0.8-0.5
2 0.8–0.3 DIEDS-2-0.8-0.3
2 0.8–0.5 DIEDS-2-0.8-0.5
4 0.8–0.3 DIEDS-4-0.8-0.3
4 0.8–0.5 DIEDS-4-0.8-0.5
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differentially expressed isoforms (DI), or genes detected as alter-
native spliced (ASG). Each isoform or gene detected as differen-
tially expressed was called positive (P), and was classified as true
positive (TP) or false positive (FP) based on whether it was or not
simulated as differentially expressed, respectively. Meanwhile,
an isoform or gene detected as not differentially expressed (nega-
tive, N) was classified as true negative (TN) or false negative (FN)
depending on whether it was or not simulated as not differen-
tially expressed, correspondingly. In particular, for DIE work-
flows, those isoforms simulated either as DIE, DE, DIEDS or DS
were considered as TPs, since DS could cause DIE; given that we
did not know if it occurred or not, isoforms from genes with DS
were not considered as FNs. Then, accuracy, sensitivity, precision
and the F-score (harmonic mean between sensitivity and preci-
sion) were computed. The ability of a workflow to deal with FPs
was characterized measuring the FP rate (FPR). In addition, the
correlation between pipeline performance and isoform/gene ex-
pression and effective length was also evaluated. For this, iso-
form/gene groups were first defined according to their expression
level and secondly, according to their effective length. Then, per-
formance measures for each isoform/gene group were obtained.

We also evaluated the effect of simulation subgroup, i.e.
DIEDS-2-0.8-0.3, and the effect of the number of isoforms per
gene. In the first case, isoforms and genes were clustered ac-
cording to their simulation subgroup (Table 2) and the TP rate
(TPR) was computed in order to determine if the magnitude of
deregulation influenced the DI/ASG detection. In the other case,
genes were grouped according to their number of annotated iso-
forms, i.e. 1, 2–4, 5–9 and >9 transcripts and TPRs per each of
those groups were computed. Those numbers correspond to the
33, 66 and 99 percentiles, respectively, of the distribution of the
number of isoforms per gene in humans.

Results and discussion

Nine workflows for DIE and DS analysis were compared in this
study based on synthetic data, where the true status of each

isoform or gene was controlled. Three experimental scenarios,
S1, S2 and S3 were designed to evaluate the effect of the per-
centage of differential genes (S1 and S2) and the number of rep-
licates per condition (S2 and S3).

Concordance of DE results

The concordance of DE results was evaluated looking at the
number and percentage of detected DI/ASG (P and TP) in the 10
replicates run for each scenario. Results for DIE and DS work-
flows are shown in Figure 3 and summarized in Supplementary
Tables S4 and S5. In the case of DIE pipelines, the EBSeq work-
flow detected the highest amount of DI (>8500) in the three
tested scenarios, whereas the Cufflinks pipeline found the low-
est values, three times lower than the EBSeq results. However,
EBSeq had the lowest number of P found simultaneously in the
10 simulations (Figure 3A), indicating the poor concordance of
this method in all three scenarios. On the other hand, DESeq2
and Limma showed a higher concordance of P (>17%, Figure 3A)
and TP (> 30% Figure 3B) along simulations, especially for S2
and S3, showing that they were more robust than EBSeq.
Comparing S1 and S2 scenarios, EBSeq and Cufflinks methods
did not show differences in the percentage of TPs. On the con-
trary, DESeq2, Limma and NOISeq increased this percentage in
S2 by approximately 5%. TP percentages were increased by 10%
for EBSeq and DESeq2 and only 1% for Cufflinks and Limma
from S2 to S3. Meanwhile, NOISeq was the only method that
showed the highest percentage of TP detections in S2. The FP
percentage (Figure 3C) was<5% for all the scenarios and pipe-
lines, indicating the effectiveness of the simulation procedure.

In the case of the DS workflows, CufflinksDS found the low-
est average number of ASG (<303); whereas, the highest values
were observed for DEXSeq (>423). The lowest and the highest
percentage of P were found for SplicingCompass (<20%)
and LimmaDS (>25%), respectively (Figure 3A). Moreover,
SplicingCompass and CufflinksDS had a poor concordance of TP
detection (Figure 3B). Interestingly, all workflows except

Figure 3. Concordance of workflows results in the 10 simulations performed in each scenario. Here, concordance was measured by means of the percentage of signifi-

cant detections (A), true significant detections (B) and false significant detections (C) of differential isoforms/genes found in the 10 runs of each scenario. Each panel is

divided into two facets, one for DIE workflows, detecting differentially expressed isoforms, and other for DS workflows, detecting differentially spliced genes.
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CufflinksDS, increased the percentage of P and TP in S2 with re-
spect to S1 and S3. In terms of FP, LimmaDS pipeline showed
the highest values, near to 10% (Figure 3C).

Overall performance results

The overall performance measures for the evaluated workflows
on the simulated scenarios are listed in Supplementary
Table S6. All DIE and DS workflows achieved a high accuracy
(>0.85) in all scenarios and hence, this measure was not further
considered in our comparisons. Sensitivity, precision and
F-score for DIE workflows are shown in Figure 4, panels A–C. In
terms of sensitivity (Figure 4A), all DIE pipelines reached values
<0.65; the highest values were exhibited for EBSeq (S1 and S3),
NOISeq (S2) and DESeq2 (S3), and the lowest for Cufflinks. In
terms of precision (Figure 4B), EBSeq and NOISeq (S1 and S2)
had low performance; whereas, values >0.9 were achieved by
Limma, Cufflinks (S2 and S3) and NOISeq (S3). It is worth men-
tioning that only Limma (S1) and NOISeq (S3) were able to con-
trol the imposed FDR, achieving precisions >0.95. When the
three experimental scenarios were compared, an improvement
from S1 to S3 was noted, except for NOISeq’s sensitivity and
Limma’s precision, which showed opposite behaviours. In
terms of the F-score, the best values (>0.7) were found for
DESeq2, EBSeq, Limma (S3) and NOISeq (S1 and S2). Thus,
DESeq2 and EBSeq workflows seem to be adequate to DIE ana-
lysis. However, if precision is preferred, Limma and NOISeq are
recommended.

The Figure 4D–F summarizes the performance results for DS
workflows. In terms of sensitivity (Figure 4D), DEXSeq and
LimmaDS had the best performance, achieving values >0.5 in
nearly all scenarios; whereas CufflinksDS and SplicingCompass
exhibited the poorest results. However, CufflinksDS showed the
highest precision (>0.8), controlling also the FDR in S3
(Figure 4E). Although DEXSeq had the lowest precision (<0.75),
this method together with LimmaDS, achieved higher F-score
values in all cases (>0.55) and hence these pipelines are ad-
equate to detect ASG with high sensitivity and precision.
Particularly, LimmaDS had lower sensitivity than DEXSeq but, it
reported ASG more precisely.

The ability to deal with FP results was evaluated using the
FPR (Supplementary Figure S1). In the case of DIE workflows
(Supplementary Figure S1A–C), the lowest FPR was achieved by
Cufflinks in all scenarios, whereas EBSeq, in the three scenarios,
and NOISeq, in S1 and S2 had the highest FPR. Regarding DS
pipelines (Supplementary Figure S1D–F), CufflinksDS showed
the lowest FP values and DEXSeq the worst. In general, FPR val-
ues did not exceed 0.05, with higher values for S2 in comparison
with S1. In the S3 all DIE pipelines, except Limma, had lower
FPRs in respect to S2.

Average performance measures were correlated with the
isoform/gene expression level (Supplementary Figures S3, S4
and S5) and with isoform/gene effective length (Supplementary
Figures S6, S7 and S8). It was found that both expression and
length affected more the performance of DS workflows than of

Figure 4. Overall performance measures along 10 simulations performed in three experimental scenarios. A–C: DIE pipelines, D–F: DS workflows.
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DIE pipelines. Moreover, the latter exhibited performance stabil-
ity mainly for S2 and S3 scenarios. In particular, higher perform-
ance scores and less dependence on expression level and length
were observed for both DS and DIE pipelines in S3. In general,
sensitivity, precision and F-score were higher for those isoform/
gene with higher expression values, and lower isoform/gene
length increased except for Cufflinks and CufflinksDS.

Based on the poor performances described above for
Cufflinks, EBSeq, CufflinksDS and SplicingCompass, these
methods were excluded from further analysis and only five
pipelines were selected for subsequent evaluations: DESeq2,
Limma and NOISeq, for DIE analysis, DEXSeq and LimmaDS for
DS study.

Effect of the number of isoforms

Figure 5 illustrates the relationship between the TPRs and the
number of isoforms per gene. Upper (lower) panels show the
results for the DIE (DS) workflows and the three evaluated
scenarios. For DIE workflows (Figure 5A–C), the percentage of
TPs was higher for isoforms belonging to genes with only one
annotated transcript (gene group ‘1’) and lower for those be-
longing to genes with more than nine isoforms (gene group
‘>9’), in all scenarios. For instance, in S2 (Figure 5B), all work-
flows achieved percentages >75% for isoforms from gene
group ‘1’; while the percentage of TPs in gene group ‘>9’ was
<50%. We suspected this behaviour was caused by lower ex-
pression values and complexity of isoform reconstruction

process when the number of isoforms per gene increases.
DESeq2 and NOISeq showed the highest and similar TPRs in S1
(Figure 5A) and S2, while DESeq2 and Limma performed best in
S3 (Figure 5C). In general, all workflows performed better in S2
compared to S1 and in S3 compared to S2, except for NOISeq,
that had poorer TPRs in S3.

In the case of DS workflows (Figure 5, panels D, E and F), the
observed TPRs were very similar in all scenarios and in all gene
groups. The highest values were achieved by DEXSeq (>60%).
Notably, LimmaDS showed TPRs >40% that was better than
Limma performance in DIE analysis. The TPRs practically did
not change between S1 and S2, whereas in S3, DEXSeq and
LimmaDS increased the TPRs in all gene groups.

The relationship between FP and the gene groups is illus-
trated in Supplementary Figure S2. In the case of DIE pipelines,
FPs distribution along gene groups was different between scen-
arios and pipelines. DESeq2 and NOISeq showed similar behav-
iour along S1 and S2, with most of FP (>35%) for gene group
“>9”. In addition, the number of FPs increased with the number
of isoforms per gene, as expected. Meanwhile, most FPs
for Limma were found in the gene group ‘2–4’. Nevertheless,
Limma behaved similarly to DESeq2 and NOISeq in S2 and S3,
respectively. For DS workflows, FPs distributions along gene
groups and scenarios were similar. In general, FPs were near to
20%, 25% and 45% for gene groups ‘2–4’, ‘5–9’ and ‘>9’, respect-
ively. It was observed that for both, DEXSeq and LimmaDS, FPs
were more abundant when the number of isoforms per gene
increased.

Figure 5. TPR of DIE and DS workflows as a function of the number of isoforms per gene. Panels A, B, C are for DIE workflows and D, E, F for DS workflows at S1, S2 and

S3, respectively.
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Effect of the magnitude of DE

Finally, the effect of the magnitude of DE in the ability of each
workflow to detect changes was evaluated (Figure 6). As ex-
pected, all DIE pipelines (Figure 6, panels A, B and C) showed a
higher TPR when the magnitude of the expression change was
increased; however, differences were evident as a function of
the simulation group (DE, DIE or DIEDS) and the simulation
scenario. While all methods had high TPRs when single-gene
isoforms were simulated with a fold-change of 4 in all scen-
arios, important differences were observed at fold-changes of 2,
where Limma behaved poorly in scenarios S1 and S2 and
NOISeq in scenario S3. Surprisingly, all methods had much
lower TPRs in the DIE group compared to DE. For example,
nearly-perfect TP detection was achieved with a 4 fold-change
in DE cases, this value dropped to �50% when talking about DIE
transcripts at the same fold-change. This could be explained by
the fact that multi-transcripts genes generated both high- and
low-expressed isoforms and all of those were analysed to com-
pute DIE analysis and TPRs calculation. And, as it is known,
low-expressed transcripts that are differentially expressed are
more difficult to detect than those highly expressed. When a
change in isoform proportions was included in the simulation
group (DIEDS), TPRs were again affected. In scenario S1, all pipe-
lines performed better at detecting true isoform changes when
there was also an effect on the relative proportion of the iso-
form, while this was only the case for transcripts with a 4 fold-
change in scenario S3 and was pipeline-dependent in scenario
S2. In general, and in agreement with other analyses, Limma
performance was comparatively worse at S1 and S2 and NOISeq
at S3.

For DS pipelines (Figure 6, panels D, E and F), results were
more predictable. As a general rule, DEXSeq performed better

than LimmaDS in all simulation groups and scenarios. In add-
ition, higher TPRs were found when the magnitude of the DS was
bigger. In the DIEDS group, good performance was basically asso-
ciated with the magnitude of the splicing change (values >0.75
for a 0.8-0.3 difference) and to a much lesser extent to the magni-
tude of the total fold-change of the gene (similar results for 0.5,
2 and 4 global gene fold-changes and only slightly lower in the
DS 0.5-0.8 subgroup, that is, zero global gene change). For genes
with splicing and not total expression differences (DS), better
TPRs were found when the major isoform had zero (DS-0-0.7) or
low (DS-0.1-0.4) relative expression in one condition, although
the biggest effect for an improved TPR was given by the magni-
tude of the differential splicing: the DS-0-0.7 subgroup had much
higher TPRs than DS-0.1-0.4, DS-0.3-0.6 and DS-0.5-0.8. Both for
DIEDS and DS groups, overall performances were better when
more replicates were present (S3 versus S1 and S2).

Evaluation of the real RNA-seq experiment

The 16 real RNA-seq samples from the prostate experiments
previously used for the simulation were then analysed with the
nine evaluated workflows. The number of significant DI and
genes reported by each pipeline and the overlap between them
is summarized in Table 3 and graphically shown on
Supplementary Figure S9. We found important differences in
the number of detected transcripts/genes among different pipe-
lines, which is in agreement with previous observations (Liu
et al. [16]). The highest number of DI was detected by EBSeq
(4600) whereas the lowest was achieved by NOISeq (11) followed
by Cufflinks (204) and Limma (342). Meanwhile, DEXSeq found
the highest number of ASG (1727) whereas CufflinksDS did not
detect significant genes. These trends are consistent with our

Figure 6. TPR for DIE and DS workflows as a function of the simulation subgroup as described in Table 2. Panels A, B, C for DIE and D, E, F, for DS workflows at scenarios

S1, S2 and S3, respectively.
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results on simulated data sets. Interestingly, most DESeq2,
Limma and NOISeq calls were present in the EBSeq results, sug-
gesting they capture a common data structure but with different
levels of stringency (Table 3). On the contrary, Cufflinks had poor
overlap with any of the other methods. On the other hand, DS
pipelines were more discrepant. SplicingCompass overlapped
only by 8% and 38%, while 80% of the LimmaDS calls were pre-
sent in DEXSeq, and logically CufflinksDS had zero overlap with
other pipelines. These results suggest that the choice of analysis
method in DS is more critical than in the DIE analysis.

Conclusions

In this study, we performed a systematic evaluation of work-
flows for DIE and DS analysis using simulated RNA-seq data
sets based on a real human experiment. The goal of our work
was to provide guidelines for choosing appropriate analysis
strategies for researchers interested in different modalities of
isoform expression changes. For this, we evaluated nine work-
flows in a variety of expression setups and experimental config-
urations. Simulated data sets are one way to perform this
evaluation enabling workflow comparison by means of con-
trolled experiments. Our simulation settings were designed
with the goal to mimic, as closely as possible, the real case. For
this, the RSEM simulation tool was selected because of its ability
to estimate and incorporate parameters learned from real data.
However, it is well known that biology is more complicated
than simulated data. In particular, biological data is typically
more complex than simulations: genes do not fall into artifi-
cially defined classes and confounding factors such as outliers
and hidden experimental or technical biases may be present
[29]. In our case, the lack of real data sets with standardized and
well annotated AS events [7] lead us to use the presented simu-
lated strategy acknowledging their limitations.

Three experimental scenarios with balanced designs were
simulated here, considering less (four) and more (eight) replicates
per condition. Although balanced designs are particular cases,
unbalanced experiments may lead to less precise estimations of
some of the experimental factors as well as negative impact on
the statistical power for both generalized linear or linear models
[30, 31]; thus, experimental design should be carefully considered.
We also tailored our analysis to human transcriptomics data sets
with variability similar to tumour-healthy subject samples. The
validity of our study for other types of data (i.e. cell-lines or organ-
isms with lower complexity) and for other experimental configur-
ations (i.e. with different numbers of replicates or unbalanced
designs) remains to be demonstrated.

In general terms, we found that a better scenario for case–
control comparisons was when more differential genes (10%
versus 5%) and replicates per condition (8 versus 4) were
available (S3). For this configuration, we found the highest
number of DI/ASG, TPs and concordance among replicated
simulation. Best performing workflows were DESeq2, Limma
and NOISeq for DIE analysis and DEXSeq and LimmaDS for DS
testing.

We used precision, sensitivity and F-score as performance
measures. For experiments with a low number of replicates, the
best pipelines to DIE analysis were DESeq2 and Limma. Also,
high stability of those performance measures was observed
when several isoform expression levels and lengths were
analysed. Based on our results, we concluded that, if high sensi-
tivity is preferred, DESeq2 is the most indicated, while the
Limma pipeline should be used if higher precision is important.
For experiments with a large number of replicates, NOISeq is
more restrictive and precise than Limma. For DS pipelines, we
found that DEXSeq was the best in terms of sensitivity and
F-score. However, precision of this method was lower than the
one achieved by LimmaDS, which reached the DEXSeq F-score
values when the number of replicates was increased. The per-
formance of DS workflows resulted to be more influenced by ex-
pression levels than gene length. In particular, better results
were observed for genes with >50 counts and length >470 nts.
We concluded that these two workflows are indicated for DS
analysis, the first one prioritizing sensitivity and the second
precision. When the FPR was evaluated, we found that both
Limma and LimmaDS workflows were superior to DESeq2 and
DEXSeq, respectively.

We also evaluated the effect of the number of isoforms per
gene in the percentage of TPs and FPs. DIE pipelines were found
to be more influenced by the number of isoforms per gene than
the DS workflows, probably by the presence of low-expressed
isoforms. In addition, the TPRs for DIE workflows decreased as
the number of isoforms per gene increased. In particular, we
found TPR between 30% and 90% using four replicates for
DESeq2 and Limma, whereas, NOISeq reached values between
25% and 60% when more replicates were available. Using
DEXSeq or LimmaDS, we found near to 40% of TPs with fewer
replicates. Meanwhile, TPR increased to 60% when more repli-
cates were available. We also found that, in DIE and DS cases,
most of the FPs were related to genes with more than nine
isoforms.

Exploring the effect of the magnitude of DE on TPRs, we
noted that this was higher for isoforms with greater expression
changes, with or without changes in the AS. In the case of

Table 3. Overlap in differentially expressed isoforms and spliced genes in the nine evaluated workflows for the prostate cancer data set

Type of detection Workflows

DIE Cufflinks DESeq2 EBSeq Limma NOISeq
Cufflinks 204 92 90 19 1
DESeq2 1572 1269 281 10
EBSeq 4600 324 11
Limma 342 10
NOISeq 11

DS CufflinksDS DEXSeq LimmaDS SplicingCompass
CufflinksDS 0 0 0 0
DEXSeq 1727 82 35
LimmaDS 103 7
SplicingCompass 91
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DESeq2 and NOISeq, TPs detection was further improved when
the percentage of differentially expressed genes was higher.
This suggests that these pipelines benefit from an extended
regulation in the data and might have problems in detecting DE
when this affects only a small subset of transcripts.
Controversially, Limma associated better performance with
more replicates. In the case of DS workflows, we found that
DEXSeq achieved the highest TPRs percentages, followed by
LimmaDS. Both of those genes found under DS and DS com-
bined with changes in isoform expression levels, with better re-
sults in the latter. Those pipelines also showed higher
percentages when more replicates were used. In both, DS and
DIEDS groups, the best results were found for genes with the
largest change in the major isoform expression.

Finally, we suggest that if the number of replicates per condi-
tion is low, the workflows based on the Limma R package could
be used to detect DIE and DS with high precision. The use of
DESeq2 and DEXSeq workflows might be preferred when a high
number of genes/isoforms are expected. If the number of repli-
cates per condition is higher, we recommend the use of NOISeq
workflow for DIE analysis combined with any of LimmaDS or
DEXSeq pipelines for DS analysis. We designed an schema of
workflow selection, showed in Figure 7, summarizing our
results. For DS pipelines, the newest aligner STAR [32] can be
used instead of TopHat2 with similar performances (see
Supplementary Figure S10).

Key Points

• A number of workflows have been developed to either
analyse differential gene or transcript expression and
differential splicing using RNA-seq data. However, there
is no clear consensus about the best practices for the
simultaneous exploration of both types of transcrip-
tional regulation. Our work analysed nine different
pipelines or workflows to provide guidelines.

• The choice of workflows choice directly impacts on the
number of detected differential features (isoforms or
genes) and the sensitivity and precision of the result.

• The number of isoforms per gene and the magnitude of
the expression change influence the power of true

detections. Fewer isoforms per gene and larger expres-
sion changes favour the detection of true positive dif-
ferential features.

• The number of replicates and the amount of expected
differentially expressed genes/isoforms between condi-
tions should be taken into account when selecting the
analysis pipeline.

• Workflows based on DESeq2 and DEXSeq are recom-
mended for experiments with few heterogeneous sam-
ples; whereas, Limma and NOISeq pipelines will return
better overall results when more replicates are available.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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[grant no. 30720150101719CB to E.A.F.], Universidad
Nacional de Villa Marı́a and the Consejo Nacional de
Investigaciones Cientı́ficas y Técnicas.

References
1. Wang J, Ye Z, Huang THM, et al. A survey of computational

methods in transcriptome-wide alternative splicing analysis.
Biomol Concepts 2015;6(1):59–66.

2. Danan-Gotthold M, Golan-Gersti R, Eisenberg E, et al.
Identification of recurrent regulated alternative splicing
events across human solid tumors. Nucleic Acids Res 2015;43:
5130–44.

Figure 7. Schema of workflows selection based on the research experiment. Each circle box contains the DIE (solid) and the DS (dashed) pipelines recommended for

transcriptomic analysis.

480 | Merino et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/20/2/471/4524048 by C

olum
bia U

niversity user on 15 April 2020

Deleted Text: differential expression
Deleted Text: to 
Deleted Text: found 
Deleted Text: ,
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx122#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx122#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
Deleted Text: number 
Deleted Text: number
Deleted Text: number 
Deleted Text: number


3. Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation
in human tissue transcriptomes. Nature 2008;456(7221):470–6.

4. Kelemen O, Convertini P, Zhang Z, et al. Function of alterna-
tive splicing. Gene 2013;514(1):1–30.

5. Tazi J, Bakkour N, Stamm S. Alternative splicing and disease.
Biochim Biophys Acta-Molecular Basis of Disease 2009;1792(1):
14–26.

6. Mortazavi A, Williams BA, McCue K, et al. Mapping and quan-
tifying mammalian transcriptomes by RNA-Seq. Nat Methods
2008;5(7):621–8.

7. Soneson C, Matthes KL, Nowicka M, et al. Isoform prefiltering
improves performance of count-based methods for analysis
of differential transcript usage. Genome Biol 2016;17:12.

8. Teng M, Love MI, Davis CA, et al. A benchmark for RNA-seq
quantification pipelines. Genome Biol 2016;17:74.

9. Kanitz A, Gypas F, Gruber AR, et al. Comparative assessment
of methods for the computational inference of transcript iso-
form abundance from RNA-seq data. Genome Biol 2015;16:150.

10.Leng N, Dawson JA, Thomson JA, et al. EBSeq: an empirical
Bayes hierarchical model for inference in RNA-seq experi-
ments. Bioinformatics 2013;29(8):1035–43.

11.Trapnell C, Roberts A, Goff L, et al. Differential gene and tran-
script expression analysis of RNA-seq experiments with
TopHat and Cufflinks. Nat Protoc 2012;7(3):562–78.

12.Aschoff M, Hotz-Wagenblatt A, Glatting KH, et al.
SplicingCompass: differential splicing detection using RNA-
seq data. Bioinformatics 2013;29(9):1141–8.

13.Anders S, Reyes A, Huber W. Detecting differential usage of
exons from RNA-seq data. Genome Res 2012;22(10):2008–17.

14.Alamancos GP, Agirre E, Eyras E. Methods to study splicing
from high-throughput RNA sequencing data. Methods Mol Biol
2014;1126:357–97.

15.Hooper JE. A survey of software for genome-wide discovery of
differential splicing in RNA-Seq data. Hum Genomics 2014;8(1):3.

16.Liu R, Loraine AE, Dickerson JA. Comparisons of computa-
tional methods for differential alternative splicing detection
using RNA-seq in plant systems. BMC Bioinform 2014;15(1):364.

17.Love MI, Huber W, Anders S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2.
Genome Biol 2014;15(12):550.

18.Ritchie ME, Phipson B, Wu D, et al. Limma powers differential
expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res 2015;43(7):e47.

19.Tarazona S, Furió-Tari P, Turrà D, et al. Data quality aware
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