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Outline
I. Introduction to R:
a. Getting started with R, Rstudio and installing packages.
b. R Data types and structures.
c. Reading and writing data in R.
d. R Programming concepts.
e. Tidyverse practice.
II. Introduction to Machine Learning:
a) What is Machine Learning: prediction vs. classification.
b) The dataset: training and testing datasets.
c) Machine learning evaluation metrics with examples.
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References :
R for Beginners: https://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
Cookbook for R: http://www.cookbook-r.com/
Hands-On Programming with R: https://rstudio-education.github.io/hopr/index.html
Advanced R: http://adv-r.had.co.nz/
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Getting started with R and 
Rstudio
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Getting started with R and Rstudio
Why R?
1. Free and open source.
2. Cross-platform software: it runs on Windows, Mac OS 

and UNIX/Linux.
3. Scripts and data objects can be shared across platforms.
4. There is a large and active community of R users (i.e. a 

lot of support available).
5. Easy to share implementations of new methodologies 

through R package system (your code can reach wider 
audience, your paper receives more citations).
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Integrated Development Environment (IDE) is a software application that provides 
comprehensive facilities to computer programmers for software development. 
If you need help, watch those tutorial movies: 

1) Install R: https://learnr-examples.shinyapps.io/ex-setup-r/#section-install-r

2) Install Rstudio: https://learnr-examples.shinyapps.io/ex-setup-r/#section-install-rstudio
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Getting started with R and Rstudio
1. Download and install R: http://cran.r-project.org
2. Download and install Rstudio: 

https://www.rstudio.com/products/rstudio/download/#d
ownload

Rstudio is an Integrated Development Environment (IDE) for R. You don’t 
have to use Rstudio if you don’t want to, but it makes your life easier with 
R, especially if you are a new R user.
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RStudio includes an editor with many R specific features, a console to execute your 
code, and other useful panes. 
RStudio provides a useful cheat sheet with the most widely used commands. You can 
get it from RStudio: https://rstudio.org/links/ide_cheat_sheet

R style: http://adv-r.had.co.nz/Style.html
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Getting started with R and Rstudio
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See GMS6014S23_Lec12_r_code.R
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Installing packages
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CRAN: The Comprehensive R Archive Network
Bioconductor: https://www.bioconductor.org/
Install packages tutorial: https://learnr-examples.shinyapps.io/ex-setup-r/#section-
install-packages

8

Installing packages
• Installing packages depends on the source of the package 

you are want to install:
1. CRAN packages can be installed using R command: 

installed.packages() from R console: 
install.packages("caret", dependencies = T) 
install.packages("tidyverse", dependencies = T)

2. Bioconductor (PMID: 15461798) packages. To install core 
packages:
if (!requireNamespace("BiocManager", quietly = T)) 
install.packages("BiocManager") 
BiocManager::install()

To install specific packages:
BiocManager::install(c("GenomicFeatures", "AnnotationDbi"))
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Installing packages
3. github packages: installed using 

install_github() function from devtools
package:
install.packages("devtools")

To install specific packages:
install_github("benjjneb/dada2")
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Working with packages
Getting help on packages and functions:
library(readr)#load package you installed
• List all functions in the package readr: 
ls("package:readr")
• Get help page for read_table function:
?read_table or help("read_table")
• Search the word "read" in help pages:
help.search("read") or ??read
•Getting help on operators:
?"+"
?">"
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R Data types
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R Data types
There are several data types in R:
1. Numeric: 1,2,3,4,5, ….
2. Logical : TRUE, FALSE or T, F
3. Character: 'a', 'b', 'hello', 'qual'
4. Integer: 1L, 2L, 3L
5. Dates: “01/05/2000", "03/07/2001", 

"08/15/2002", "10/30/2003", "12/22/2004"
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R Data types
The class() function in R helps us determine the type of data we have:
> class(1)
[1] "numeric"
> class('a')
[1] "character"
> class(T)
[1] "logical"
> class('T')
[1] "character"
> class(1.4)
[1] "numeric"
> class(1L)
[1] "integer"

> myDates <- as.Date(c("01/05/2000", 
"03/07/2001", "08/15/2002", 
"10/30/2003", "12/22/2004"), 
"%m/%d/%y”)

> class(myDates)
[1] "Date"
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R Data structures
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R Data structures
There are four common data structures in R:
1. Vectors: the core R data structure, everything else is 

just a collection of vectors. A vector is a one-
dimensional group of elements of the same type 
(numeric, character or logical). We create a vector 
using the c() function:

myVec<-c(1, 2, 3, 4, 5)
myVec<-c('a', 'b', 'c', 'd')
myVec<-letters[1:4]
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R Data structures
2. Matrices: A two-dimensional structure (rows and 

columns) that stores entries of the same type. A 
Matrix can’t store more than one data type and if you 
try to create a matrix of numeric and character values, 
R will automatically convert everything to character. 
We create a matrix using the matrix() function:

myMat<-matrix(data, num.rows, num.columns)

myMat<-matrix(c(1,2,3,11,12,13), 2, 3)
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R Data structures
myMat<-matrix(c(1,2,3,11,12,13), 2, 3)

[,1] [,2] [,3]
[1,]  1    3   12
[2,]  2   11   13

The matrix is filled by columns by default, but you can 
fill it by rows if you set byrow option to T
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R Data structures
3. Data frames: A two-dimensional structure (rows 

and columns) that stores entries of multiple types.  
We create a data frame using the 
data.frame() function:

myDF<-data.frame(chr=c(1,2,3), 
strand=c('-', '+', '+'), 
start=c(100,2000,10000), end= c(550,3000, 
11230))

18



19

R Data structures
myDF<-data.frame(chr=c(1,2,3), strand=c('-', '+', 
'+'), start=c(100,2000,10000), end= c(550,3000, 
11230))
chr strand  start   end
1 - 100     550

2 +    2000    3000
3 +    10000   11230
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R Data structures
4. Lists: is an ordered collection of structures that 

stores a variety of objects under one name.  We 
create a list using the list() function:

myList<-list(vec=myVec, mat=myMat, 
df=myDF, age=25, correct=F)
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R Data structures
myList<-list(vec=myVec, mat=myMat, df=myDF, age=25, 
correct=F)
$vec
[1] "a" "b" "c" "d"
$mat

[,1] [,2] [,3]
[1,]    1    3   12
[2,]    2   11   13
$df
chr strand start   end

1   1      - 100   550
2   2      +  2000  3000
3   3      + 10000 11230
$age
[1] 25
$correct
[1] FALSE
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Reading and writing data in R
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ASCII: American Standard Code for Information Interchange,
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Reading and writing data in R
read.table and write.table will read and write 
ASCII text files:
read.table('myFile.txt', sep='\t', header=T)
read.delim('myFile.txt')
read.csv('myFile.csv')

write.table(myDF, file ='myDF.txt', sep='\t', 
row.names=T, col.names=T)

write.csv(myDF, file ='myDF.csv')
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Reading and writing data in R

Binary data in R are read and written using save, 
load or saveRDS, readRDS :

save(myDF, file='myDF.dat’) #can save one or many objects
load('myDF.dat')

saveRDS(myDF, file='myDF.rds') #saves single object

myData<-readRDS('myDF.rds')
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Programming concepts: 
conditional expressions, loops 

and functions
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Programming concepts: conditional expressions

• if and else statements: 
Let’s say we want to print the square root of the variable x except 
when x equals 1:
x <- 1
if(x!=1){
print(sqrt(x)) 

} else {
print("I dont want to calculate the square root of 1") 

}
26
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Programming concepts: loops
• Loops are used when we need to repeat a certain task or a function 

multiple times. A loop will execute the task until a certain condition is met. 
The most famous example is the for loop:  

Let’s say we have the vector x, which has 10 numbers, and we want to find the sum of 
all those numbers:

x <- c(1,2,3,4,5,6,7,8,9,10)
x_sum <- 0
for(i in 1:length(x)){
x_sum <- x_sum + x[i]

}
print(x_sum) # [1] 55
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Programming concepts: functions
• An R function is a chunk of code used to perform the same task with different input values. 

A function takes in different arguments and returns an output (R is a collection of functions).
• There are two types of functions in R: user defined (you write them) and pre-defined

(supplied by R or a package you install).

Let’s revisit the for loop example, we can rewrite x sum as a function:
x_sum <- function(y){
my_sum <- 0
for(i in 1:length(y)){
my_sum <- my_sum + y[i]
}
return(my_sum)
}

x <- c(1,2,3,4,5,6,7,8,9,10)
x_sum(x)
[1] 55

28



https://stat.ethz.ch/R-manual/R-devel/library/base/html/sum.html
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Programming concepts: functions
• sum is a pre-defined function in R provided by “base” package:
x <- c(1,2,3,4,5,6,7,8,9,10)
sum(x)
[1] 55
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See GMS6014S23_Lec12_tidyverse_code.R

Reference:
https://www.tidyverse.org/learn/
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Tidyverse practice
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The tidyverse
• Most of the time we will be dealing with data 

frame (the preferred type for data storage for 
many).
• Data frames can be organized in a specific data 

format called “tidy” and operations performed 
on these tidy data frames (reordering, 
subsetting, adding, etc ..)  is streamlined using 
tidyverse.
• tidyverse (https://www.tidyverse.org/) is a 

collection of packages and can be installed with:
install.packages("tidyverse”, 
dependencies = T)
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The tidyverse
• tidyverse has many packages, the mostly used ones are:
1. The readr package for reading and writing data.
2. The dplyr package for manipulating data frames.
3. The purrr package for working with functions.
4. The ggplot2 package for plotting and data visualization.

• All of these work on “tidy” data: a data table with each row 
represents one observation and columns represent different 
variables associated with each of these observations.
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The tidyverse
• To demonstrate the utility of tidyverse, we will be using a locally 

processed RNAseq dataset for cancer and normal cell lines. 
• Let’s read the data directly from dropbox:
gene_exp01 <-
read.csv("https://www.dropbox.com/s/qrynlw7wzncesl9/diff_gene_exp.csv?dl=1")

dim(gene_exp01)
[1] 33117    14 # 33,117 rows and 14 columns

colnames(gene_exp01)
[1] "test_id"    "gene_id"     "gene"        "locus"       "sample_1"   
[6] "sample_2"    "status"      "value_1"     "value_2"     "log2FC"     
[11] "test_stat"   "p_value"     "q_value"     "significant”
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The tidyverse
• Let’s say we don’t want all 14 columns. We just want 6 of them: 

gene, locus, status, log2FC, p_value, q_value

• We can use select function to select the columns we want by 
name:

gene_exp02 <- gene_exp01 %>% select(gene, locus, status, 
log2FC, p_value, q_value)

dim(gene_exp02)

[1] 33117     6
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The tidyverse
• Let’s suppose we want to filter out genes that did not get “OK”  in 

their test status (or keep only genes with “OK” status):
gene_exp03 <- gene_exp02 %>% filter(status =="OK")

• Let’s clean the log2FC column to remove non-numeric values:
gene_exp04 <- gene_exp03 %>% 
filter(!is.na(as.numeric(as.character(log2FC))))  %>% 
mutate(log2FC=as.numeric(as.character(log2FC))) %>% 
filter(log2FC != "Inf")
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The tidyverse
• Let’s say we want to annotate gene_exp04 with a new column. The new column 

name is “Significant” and it will have one of three values: 
a) If log2FC > 0 and q_value < 0.05 then value is "Significant and Up in Normal”.
b) If log2FC < 0 and q_value < 0.05 then value is  “Significant and Up in Cancer"
c) If q_value >= 0.05 then value is: "Not Significant”

We create a function for that (x: log2FC and y: q_value):
sigFunction <- function(x, y){

if(x > 0 & y < 0.05){return(c("Significant and Up in Normal"))}
if(x < 0 & y < 0.05){return(c("Significant and Up in Cancer"))}
if(y >= 0.05){return(c("Not Significant"))}
}
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mapply: 
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/mapply
mapply is a functional. Functionals are functions that help us apply the same function 
to each entry of a vector, matrix, data frame or list. 
R has an array of functionals, the most famous are: apply and its siblings (sapply, 
lapply, mapply, tapply, …).
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The tidyverse
• We use mutate to add the new column “Significant”:
gene_exp04 <- gene_exp04 %>%  
mutate(Significant=mapply(function(x, y) 
sigFunction(x,y), log2FC,  q_value))

• We can do all the above in just one step if you don’t mind the long code:
gene_exp04a <-
read.csv("https://www.dropbox.com/s/qrynlw7wzncesl9/diff_gene_exp.c
sv?dl=1") %>% select(gene, locus, status, log2FC, p_value, q_value) 
%>% filter(status =="OK")  %>%
filter(!is.na(as.numeric(as.character(log2FC)))) %>%
mutate(log2FC=as.numeric(as.character(log2FC))) %>% filter(log2FC 
!= "Inf") %>% mutate(Significant=mapply(function(x, y) 
sigFunction(x,y), log2FC,  q_value))
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The tidyverse
• We can generate log2FC summary statistics, using summarize:
gene_exp04 %>% summarize(average = mean(log2FC, na.rm
=T), standard_deviation = sd(log2FC, na.rm = T)) 

average          standard_deviation

0.2262424           2.417315
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The tidyverse
• We can sort  data:
gene_exp04 %>% arrange(log2FC) %>% head() 

gene_exp04 %>% arrange(desc(log2FC)) %>% head()

• We can do nested sort :
gene_exp04 %>% arrange(q_value, log2FC) %>% head()
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The tidyverse
• The ggplot2 package provides powerful plotting and data visualization 

functions. 
• Examine the code under: #######Plotting Volcano plot with ggplot2#
v01 <- gene_exp04 %>% ggplot(aes(x = log2FC, y = -log10(q_value))) +

geom_point(aes(color = Significant)) +

scale_color_manual(values = c("grey", "green", "red")) +

theme_bw(base_size = 12) + theme(legend.position = "bottom") +
geom_hline(yintercept = -log10(0.05), linetype = "dotted") +

geom_vline(xintercept = c(-2, 2), linetype = "dotted")

• We can save our plot to PDF file with ggsave:
ggsave(filename="vol_fig1.pdf", plot = v01, height=6, width=8)
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The tidyverse
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The tidyverse
• We can customize on the fly,  so to generate a volcano plot using genes 

with log2FC more than -1 and less than 1, we use:
v02 <- gene_exp04 %>% filter(log2FC > -1 & log2FC < 1) %>% 
ggplot(aes(x = log2FC, y = -log10(q_value)))+

geom_point(aes(color = Significant)) +

scale_color_manual(values = c("grey", "green", "red")) + 
theme_bw(base_size = 12) + theme(legend.position = "bottom") +

geom_hline(yintercept = -log10(0.05), linetype = "dotted") +

geom_vline(xintercept = c(-0.5, 0.5), linetype = "dotted")

• We can save our plot to PDF file with ggsave:
ggsave(filename="vol_fig2.pdf", plot = v02, height=6, 
width=8)
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The tidyverse
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See GMS6014S23_Lec12_ml_code.R

References:
Data Mining: Practical Machine Learning Tools and Techniques. Mark A. Hall, Ian H. 
Witten, Eibe Frank, Christopher Pal
Introduction to machine learning. Ethem Alpaydin
Rafael Irizarry’s edX 
Google Machine Learning Crash Course Courses.
https://developers.google.com/machine-learning/crash-course
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Machine Learning (ML)
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These days Artificial Intelligence (AI) and ML are often used interchangeably, but 
there is a fundamental distinction between the two:
AI implements decision making based on programmable rules derived from theory or 
first principles. ML decisions are based on algorithms built with data.
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What is Machine Learning
•Machine learning is the science (and art) of 

programming computers so they can learn from, and 
make predictions on data. (Aurélien Géron)

•Machine learning has been successfully applied to 
many areas: 

1. Image processing.
2. Speech recognition.
3. Movie recommendation. 
4. Spam and malware detectors.

45



46

What is Machine Learning
• In machine learning, we have two main parts:

1. The outcome (what we want to predict).
2. The features (what we will use to predict the 

outcome).

• The mission is to build a system (algorithm) that takes in 
feature as input and returns a prediction for the outcome. 

• The approach is to train an algorithm using a set of features 
for which we know the outcome and then apply it to 
another dataset that we don’t know its outcome.
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Prediction and Classification
Outcome Feature 1 Feature 2 Feature 3

y1 x1,1 x1,2 x1,3

y2 x2,1 x2,2 x2,3

y3 x3,1 x3,2 x3,3

•When the outcome is continuous we refer to the 
machine learning task as prediction.
•When the outcome is categorical, we refer to the 

machine learning task as classification.
47



dataF<-
read.csv("https://dl.dropbox.com/s/5qe56ysmmigh398/ml_lecture_data.csv?dl=1", 
stringsAsFactors=T)

48

The dataset: Expression level and sample type

Outcome (y) Feature (x)

cancer 750

normal 700

cancer 680

normal 740

• The outcome: cancer, normal
• The features: geneX expression levels.

• The mission is to build an algorithm that 
takes in geneX expression level as input 
and returns a classification for the sample 
type {cancer, normal}. 

• The machine learning approach is to train 
the algorithm using this feature (which 
we know the outcome for) and then 
apply it to another set of features that we 
don’t know the outcome for.

Table of 1050 x 2
(rows are samples)
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Training and Test Datasets
•A machine learning algorithm is evaluated on 
how it performs in real world with completely 
new dataset(s).

•When developing an algorithm, we work on a 
dataset with known outcomes (training dataset).

• In the geneX expression level table, the outcome 
for each sample in the dataset is known. 
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Training and Test Datasets
•The dataset is split into two parts and we pretend as 

if we don’t know the outcome for one of these parts: 

1. Training set (60-75% of the dataset): we know the 
outcome and use it to develop and optimize the 
algorithm. Once we are done developing the 
algorithm, we don’t use this dataset.

2. Test set (40-25% of the dataset): we pretend we 
don’t know the outcome and we use it to test the 
performance of our algorithm.
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train_rows <- createDataPartition(dataF$y, list=F)
train_set <- dataF[train_rows, ]
test_set <- dataF[-train_rows, ]

51

Training and Test Datasets

Outcome
(y) 

Feature 
(x) 

cancer 750

normal 700

cancer 680

normal 740

Outcome
(y) 

Feature 
(x) 

cancer 750

normal 700

Outcome
(y) 

Feature 
(x) 

? 680

? 740

Training set

Test set

We will stop pretending when we are done constructing 
our algorithm and start evaluating it. 51



dataF %>% ggplot(aes(y, x)) + geom_boxplot()
dataF %>%   ggplot(aes(x, fill = y)) + geom_density() 

52

Machine Learning is NOT Magic

cancer normal

x cancer
normal

y

x

de
ns

ity
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Machine Learning Evaluation Metrics
• Let us assume we are done developing our algorithm 

using the training set. Now, we switch to evaluating 
it using the test set.

•The simplest way to evaluate the algorithm in our 
example is by using Overall Accuracy: the proportion 
of cases that were correctly predicted in the test set. 

•We will start by developing the simplest possible 
algorithm: randomly guessing the outcome (we are 
ignoring x and just guessing y).
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#random guessing
y_predict <- sample(c("cancer", "normal"), nrow(test_set), replace = TRUE) %>% 
factor(levels = levels(test_set$y))
#overall Accuracy
cat("1) random guessing overall accuracy: ", mean(y_predict == test_set$y), "\n\n")
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Machine Learning Evaluation Metrics
•Since we are ignoring x and just guessing y, this 
approach becomes more like flipping a coin.

•As expected, the Overall Accuracy for randomly 
guessing the outcome is 0.4895 (~50%).

•Can we do better than 50%?
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train_set %>% group_by(y) %>% summarize(mean(x), sd(x))
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Machine Learning Evaluation Metrics
• Let us explore our training 

dataset:

cancer normal

y

x

y mean(x) sd(x)

cancer 694 38.7

normal 652 38.4

Algorithm: classify as cancer if geneX
expression level is within two standard 
deviations from the average geneX
expression level for cancer samples.
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y_predict <- ifelse(train_set$x > (694-(2*39)), "cancer", "normal") %>%  factor(levels 
= levels(train_set$y))
cat("2) mean/sd overall accuracy: ", mean(y_predict == train_set$y), "\n\n")
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Machine Learning Evaluation Metrics
•Algorithm: classify as cancer if 
geneX expression level is within 
two standard deviations from the 
average geneX expression level for 
cancer samples:

694-(2*39) = 616

• if geneX expression level is more 
than  616 the sample type is 
cancer, else sample type is 
normal.

y mean(x) sd(x)

cancer 694 38.7

normal 652 38.4

Overall Accuracy is ~ 0.773 

Can we do better than 0.773?
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cutoff <- seq(610, 655)
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Machine Learning Evaluation Metrics
• Instead of using a single cutoff (616), let us consider 
multiple cutoffs (from 610 to 655) and then pick the 
one that provides the best result. 

• It is important that we optimize the cutoff using only 
the training set (the test set is only for evaluation). 

•Evaluating an algorithm using the training set can lead 
to overfitting (over-optimistic assessments).
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mcutoffs_map_fun<-function(x){
y_predict <- ifelse(train_set$x > x, "cancer", "normal") %>% factor(levels = 

levels(train_set$y))
mean(y_predict == train_set$y)

}
#####
mcutoffs_accuracy <- sapply(cutoff, mcutoffs_map_fun)
plot(cutoff, mcutoffs_accuracy, type="b")
#####
cat("3a) multiple cutoff highest accuracy (training dataset): ", 
max(mcutoffs_accuracy), "\n")
cat("3b) cutoff that resulted in the highest accuracy (training dataset): ", 
cutoff[which.max(mcutoffs_accuracy)], "\n")
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Machine Learning Evaluation Metrics

Max Overall Accuracy
is ~0.83 with geneX

expression level = 642

Training set 

642
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best_cutoff <- cutoff[which.max(mcutoffs_accuracy)]
y_predict <- ifelse(test_set$x > best_cutoff, "cancer", "normal") %>% factor(levels = 
levels(test_set$y))
cat("3c) best cutoff overall accuracy on test dataset: ", mean(y_predict == test_set$y), 
"\n\n")
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Machine Learning Evaluation Metrics
•Lets take this algorithm that uses 642 as a cutoff and 
apply it to  the test set. 

•This will result in an Overall Accuracy of ~ 0.84
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cat("4) accuracy for each sample type alone:\n")
test_set %>% mutate(y_predict = y_predict) %>% group_by(y) %>% 
summarize(accuracy = mean(y_predict == y)) %>% print()
cat("\n\n")

60

Machine Learning Evaluation Metrics
•Overall accuracy can be a deceptive measure, especially when 

we have an imbalanced dataset (prevalence of one outcome 
over the other). In the previous example ~77% of the outcome 
is cancer.

• If we calculate the accuracy for each sample type alone, we will 
find that our accuracy for cancer= 0.94 but our accuracy for 
normal= 0.48 

• This means although we can classify cancer with high accuracy, 
we are classifying almost half of normal as cancer!!! 

• Clearly, we need better evaluation metrics.
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Machine Learning Evaluation Metrics
•Sensitivity and specificity to the rescue!
•Sensitivity: the ability of an algorithm to 
predict/classify a positive outcome when the actual 
outcome is positive: classified= cancer when actual= 
cancer.
•But sensitivity on its own is not enough to evaluate an 
algorithm!
•Specificity: the ability of an algorithm to not classify a 
sample as cancer when the actual outcome is normal.
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#generate confusion matrix
cm <- confusionMatrix(data = y_predict, reference = test_set$y)
cat("5) best cutoff evaluation metrics:\n")
cat("confusion matrix:\n")
print(cm$table)
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Machine Learning Evaluation Metrics

Actually 
positive

Actually 
negative

Classified 
positive 

True 
positives 

(TP) 

False 
positives 

(FP) 
Classified 
negative

False 
negatives 

(FN) 

True 
negatives 

(TN) 

Confusion Matrix:
Actually 
cancer

Actually 
normal

Classified 
cancer 

382 62

Classified 
normal

24 57 

Confusion Matrix:
Test set 
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Machine Learning Evaluation Metrics

Actually 
cancer
Actually Positive

Actually 
normal
Actually Negative

Classified 
cancer 
Classified positive 

True 
positives 

(TP) 

False 
positives 

(FP) 
Classified 
normal
Classified negative 

False 
negatives 

(FN) 

True 
negatives 

(TN) 

Confusion Matrix: •Sensitivity (on 
target)= TP/(TP+FN)
•Also called recall

63



64

Machine Learning Evaluation Metrics

Actually 
cancer
Actually Positive

Actually 
normal
Actually Negative

Classified 
cancer 
Classified positive 

True 
positives 

(TP) 

False 
positives 

(FP) 
Classified 
normal
Classified negative 

False 
negatives 

(FN) 

True 
negatives 

(TN) 

Confusion Matrix: •Specificity (off 
target)=TN/(TN+FP)
•Also called 
precision.
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Machine Learning Evaluation Metrics

Measure of: AKA: Definition:

Sensitivity Recall TP/(TP+FN)

Specificity Precision TN/(TN+FP)
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cat("\n\n")
print(cm$overall["Accuracy"])
cat("\n")
print(cm$byClass[c("Sensitivity","Specificity", "Prevalence")])
cat("\n\n")
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Machine Learning Evaluation Metrics

Actually 
cancer

Actually 
normal

Classified 
cancer 

382 62

Classified 
normal

24 57 

Confusion Matrix:
•Sensitivity (on target)= 
TP/(TP+FN)

= 382 /(382 +24)= 0.94

•Specificity (off 
target)=TN/(TN+FP)

=57/(57+62)=0.48
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Questions?

Notes:

Ø Those topics are covered in more details in GMS6232
Ø Evaluation on GatorEvals
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