RNA-seq: Getting counts

RNA-Seq: Getting counts

- □ Raw counts (reads) per gene.
- Normalized
 - FPKM (Fragments Per Kilobase gene length and per Million reads)
 - □ TPM (Transcripts Per Million)
- Depending on the which program will be used for identifying DEGs.
 - □ DESeq (DESeq2) requires raw counts
 - CuffLinks generated normalized counts as well as models for CuffDiff.

RNA-Seq Overview

Four major steps, semi-independent of each other.

- I. Mapping \rightarrow produce SAM/BAM or counts data.
- II. Quantification → produce RPKM for each gene/transcript.
 III. Identifying DEG (Differentially expressed)
- III. Identifying DEG (Differentially expressed genes) \rightarrow gene list.

RNA-seq: Identify DEGs

Many options at this stage. Personal favorites – Cuffdiff and DESeq2

Identification of Differentially Expressed Genes (DEGs)

module load cufflinks

Frist merge the gtf files for samples to be compared. In /ufrc/gms6014/share/genome/dm6/annotation/genes.gtf dm6.gtf In /ufrc/gms6014/share/genome/dm6/sequence/genome.fa dm6.fa

cuffmerge -g dm6.gtf -s dm6.fa -p 2 WG_assemblies.txt

./WG_young_1.clout/transcripts.gtf ./WG_young_2.clout/transcripts.gtf ./WG_old_1.clout/transcripts.gtf ./WG_old_2.clout/transcripts.gtf

Identification of Differentially Expressed Genes (DEGs)

module load cufflinks

Frist merge the gtf files for samples to be compared. In /ufrc/gms6014/share/genome/dm6/annotation/genes.gtf dm6.gtf In /ufrc/gms6014/share/genome/dm6/sequence/genome.fa dm6.fa

cuffmerge -g dm6.gtf -s dm6.fa -p 2 WG_assemblies.txt

./WG_young_1.clout/transcripts.gtf ./WG_young_2.clout/transcripts.gtf ./WG_old_1.clout/transcripts.gtf ./WG_old_2.clout/transcripts.gtf

Identification of differentially expressed genes (DEGs)

module load cufflinks

cuffdiff -o Old_v_Young -b ./index/Dm6.44.fa -u Merged/merged.gtf -p 2 -L youngWG,oldWG \
 ./starMap/WG_young_1Aligned.sortedByCoord.out.bam,./starMap/WG_young_2Aligned.sortedByCoord.out.bam \
 ./starMap/WG old 1Aligned.sortedByCoord.out.bam,./starMap/WG old 2Aligned.sortedByCoord.out.bam

Practice – observe CuffDiff results

- Transfer the CuffDiff result folder ("Old_v_Young") from HiPerGator to your own computer.
- Observe (you may force it to be opened by Excel by adding .xlxs extension):
 - Gene_exp.diff
 - Gene_exp.tracking.
- Further explore of results with the R package "cummeRbund".

Observe CuffDiff results with cummeRbund

RNA-Seq Overview

Four major steps, semi-independent of each other.

- I. Mapping \rightarrow produce SAM/BAM or counts data.
- II. Quantification → produce RPKM for each gene/transcript.
- III. Identifying DEG (Differentially expressed genes) → gene list.
- IV. Identifying affected biological processes/pathways.

Functional Analysis of HTS data

Gene Ontology –
<u>http://www.geneontology.org/</u>

Regulatory pathways.

Modeling & Systems Biology.

Gene Ontology – hierarchical framework of terms / concepts 😫 AmiGO : Tree View - Microsoft Internet Explorer File Edit View Favorites Tools Help TOP DOES GENE OHIOTOGY GO LINKS GO SUMIMA □GO:0003673 : Gene Ontology (46199) • GO:0008150 : biological process (30188) ⊡ o GO:0016265 : death (525) ⊡ o GO:0008219 : cell death (484) ⊡ o GO:0012501 : programmed cell death (447) □ • GO:0006915 : apoptosis (419) • GO:0006916 : anti-apoptosis (111) □ • GO:0008632 : apoptotic program (51) • .
 GO:0008637 : apoptotic mitochondrial changes (11) □
 GO:0030262 : apoptotic nuclear changes (10) . • GO:0030263 : apoptotic chromosome condensation (1) . • GO:0006309 : DNA fragmentation (9) . • GO:0030264 : nuclear fragmentation (0) ■ © GO:0006919 : caspase activation (16) ■ © GO:0006921 : disassembly of cell structures (10) • © GO:0008633 : induction of proapoptotic gene products (0) ■ @ GO:0045884 : regulation of survival gene products (7) □
 GO:0006917 : induction of apoptosis (148) ■ o GO:0008624 : induction of apoptosis by extracellular signals (46) ⊡ o GO:0008629 : induction of apoptosis by intracellular signals (23) . • GO:0019051 : induction of apoptosis by virus (0) • • GO:0006925 : killing of inflammatory cells (0) • • GO:0006927 : killing transformed cells (3) • © GO:0006926 : killing virus-infected cells (1) ⊡ o GO:0045476 : nurse cell apoptosis (1) • • GO:0006924 : peripheral killing of activated T-cells (0) ■
 o GO:0012502 : induction of programmed cell death (148) \Box \odot GO:0006917 : induction of apoptosis (148) \bullet ⊡ o GO:0008624 : induction of apoptosis by extracellular signals (46) ■ o GO:0008629 : induction of apoptosis by intracellular signals (23) . • GO:0019051 : induction of apoptosis by virus (0) ■ @ GO:0005575 : cellular component (22371) ■ @ GO:0003674 : molecular function (37018)

DAGviow

Gene Ontology

Goal – "produce a dynamic controlled vocabulary that can be applied to all organisms even as knowledge of gene and protein roles in cells is accumulating and changing" – GO consortium (~2001)

Ontology:

"The branch of metaphysics that deals with the nature of being" – The American Heritage Dictionary

Implications of Gene Ontology (I)

Monitoring biological processes or molecular functions beyond individual gene.

Example:

1.) Which biological process (mol. Function) is activated/suppressed following a treatment?

Gene Expression Profile Differences between the two lung cancer cell lines A549 and H23

extracellular (GO:0005576)	1.91E-08	169
Cell Communication	1.32E-07	690
plasma membrane (GO:0005886)	1.34E-07	511
Complement and coagulation cascades - Homo sapiens	1.73E-07	20
Metabolism	2.10E-06	174
carbohydrate metabolism (GO:0005975)	2.45E-06	207
cell adhesion molecule activity (GO:0005194)	0.000102	113
Structural Protein	0.000231	271
extracellular matrix (GO:0005578)	0.000235	53
Cell Growth and Maintenance	0.000569	590
Cell Adhesion	0.000917	100

development	1.40E-07	596
cell differentiation (GO:0030154)	6.60E-05	186
regulation of gene expression, epigenetic (GO:0040029)	7.71E-05	442
cell growth (GO:0016049)	8.37E-05	307
transcription regulator activity (GO:0030528)	0.000307	319
extracellular (GO:0005576)	0.000515	153

Implications of Gene Ontology (II)

Basis for cross genome comparison and integrating knowledge from different model systems.

Term				Human Genes	Sacc. Yeast Genes		Weed Genes
o <mark>⊡ <u>cell cycle</u></mark>	<u>265</u>	182	<u>294</u>	<u>717</u>	<u>424</u>	<u>622</u>	<u>181</u>
or <u>cell cycle dependent actin filament reorganization</u>	<u>2</u>	0	0	0	<u>4</u>	0	0
IDNA replication and chromosome cycle	<u>134</u>	128	<u>67</u>	<u>175</u>	<u>172</u>	<u>73</u>	<u>146</u>
endomitotic cell cycle	0	0	<u>1</u>	<u>1</u>	0	<u>3</u>	0
	<u>171</u>	<u>39</u>	<u>69</u>	<u>181</u>	<u>213</u>	<u>253</u>	<u>3</u>
Initotic cell cycle	<u>133</u>	<u>140</u>	<u>102</u>	<u>314</u>	<u>239</u>	<u>202</u>	<u>141</u>
Inuclear migration	<u>1</u>	0	0	0	<u>13</u>	0	0
egulation of cell cycle	<u>42</u>	<u>4</u>	<u>136</u>	<u>383</u>	<u>87</u>	<u>65</u>	<u>3</u>
oı <u>schizogony</u>	0	0	0	0	0	0	0
second mitotic wave (sensu Drosophila)	<u>1</u>	0	0	0	0	0	0

Tools associated with GO

- A comprehensive <u>list</u> at GO web site.
- Tools for browsing, AmiGO, QuickGO at EBI, etc.
- Tools for identifying over represented GOs/pathways, etc.

Using GO to gain comprehensive understanding of cellular differences

Practice: Load a gene list to identify overrepresented GO