RNA-Seq Overview

Four major steps, semi-independent of each other.

- I. Mapping \rightarrow produce SAM/BAM or counts data.
- II. Quantification → produce RPKM for each gene/transcript.
- III. Identifying DEG (Differentially expressed genes) \rightarrow gene list.
- IV. Identifying affected biological processes/pathways.

Automate (Streamline) analyses

Observe the pipeline that combines decompression, mapping, and Cufflinks/Cuffdiff analysis.

HiPerGator Slurm job file .

How to gain knowledge from HTS data

Visualization of HTS data in genome context.

Discovering genomic patterns.

Identifying novel mechanism – hypothesis generation.

Visualization of HTS data

- UCSC Genome Browser
 - Server-based access to many data.
 - Custom track upload your own files or many public tracks.
 - Saved session for sharing data
- \blacktriangleright IGB sits on your computer.

Visualizing HTS data with UCSC genome browser

Practice & Observe:

- 1. Register and log in as a user.
- 2. Load the track file as custom track to the browser by copy/past the URL link or upload the file.
- 3. View 'dense' and then 'full' presentation of the track.
- 4. Save the session with your favorite gene and share it with yourself by sending the link via email.

Cautions with genome browser

Coordinates changes with every release/build of genome. – refer to genome release in your work and publication.

Discover genomic pattern

- It may start with anecdotal observation on the browser.
- Aggregated plot to verify the pattern.
 - May need to subset the data.
- Verification.
 - Additional dataset
 - Statistical verification

Discovering genomic patterns

Barski et al. (2007) Cell

Usually requires some programming (scripting). As a biologist, you need to clearly define your question, and the logic to obtain the data summary.

Practice: Identify TFBSs upstream of the mouse TNF gene.

- Retrieve 2000 bp sequence upstream of the transcription start site and save in a FASTA format file.
- Load the sequence to TFsiteScan or PROMO.

DNA Pattern – Transcription factor binding sites

		<u>Con</u>

#	Factor	<u>Model</u>	<u>Beg</u>	<u>Sns</u>	<u>Len</u>	Sequence	<u>L</u> _a	<u>L</u> <u>a/</u>	<u>L</u> _	<u>L</u> _d	<u>L</u> _{pv}	<u>S</u>	<u>S</u> _m	<u>S</u> _{pv}	<u> </u>
1	_00000 Bcd	<u>100231</u> (Bcd)	1	R	8	CTAATCCC	13.23	1.65	1.000	0.00	5.6e-02	1.00	1.00	0.0e+00	3.2e- 01
2	<u>T00063</u> Bcd	<u>M00140</u> (mid_c)	1	R	8	CTAATCCC	12.00	1.50	0.884	1.57	2.5e-01	1.00	0.98	1.1e-01	2.2e- 01
3	_00000 Prd	<u>100252</u> (Prd)	2	R	6	TAATC <mark>C</mark>	9.04	1.51	0.853	1.56	9.8e-01	1.00	0.93	6.0e-01	6.0e- 01
4	_00000 Ftz.2	<u>100243</u> (Ftz.2)	2	Ν	7	TAATCCC	8.49	1.21	1.000	0.00	5.0e-01	1.00	1.00	0.0e+00	7.2e- 01
5	<u>T00063</u> Bcd	<u>Q00016</u> (-)	2	Ν	7	TAATCCC	12.73	1.82	1.000	0.00	2.1e-01	1.00	1.00	0.0e+00	4.1e- 01
6	<u>T01469</u> lk-1 <u>T01470</u> lk-2	<u>R04208</u> ()	3	R	7	AATCCCA	14.00	2.00	1.000	0.00	nc	?	?	nc	nc
7	<u>T02246</u> AML1c <u>T02256</u> AML1a T02457 AML1	<u>R05028</u> ()	6	R	6	CCCACA	12.00	2.00	1.000	0.00	nc	?	?	nc	nc

Stringency of the matrices										Consensus			
	80		,					A	С	G	Т	-20	bp
								4	0	13	0	G	
					Cons	sensus		5	0	12	0	G	
	•	С	C	т	-1	0 bp		15	0	2	0	Α	
	A	U	G	T				0	17	0	0	С	
	40	13	23	23	Ν			17	0	0	0	Α	
	20	3	70	5	G			0	0	0	17	Τ	
		0	10	0	D			0	0	17	0	G	
	55	3	40	0	R			0	13	0	4	С	
	0	93	0	5	С			0	17	0	0	С	
	53	Q	Q	20	XX /			0	17	0	0	С	
	33	0	0	30	••			0	0	17	0	G	
	15	0	3	82	Τ			0	0	17	0	G	
	0	0	100	0	G			2	0	15	0	G	
	0	-	100	-				0	17	0	0	С	
	0	50	0	50	Y			17	0	0	0	Α	
	0	68	0	30	С			0	0	0	17	Τ	
	10	25	2	40	N/			0	0	17	0	G	
	12	35	3	48	Y			0	2	0	15	Τ	
								0	13	0	4	С	
		P	53 ()1				0	7	2	7	Y	

P53_02

Practice: Identify conserved TFBSs upstream of the human TNF gene.