Blast output

Database: dbs/dm6.44.fasta
17,874 sequences; $102,739,733$ total letters

Query= sp|P08505|IL6_MOUSE Interleukin-6 OS=Mus musculus OX=10090 GN=Il6 PE=1 $S V=1$

Length=211
Sequences producing significant alignments:
FBgn0046706 type=gene; loc=2R:4014111..4049342; ID=FBgn0046706;...

Score	E
(Bits)	Value
$\underline{30.0}$	4.0

Questions after the Blast search

Questions:
How are the hits identified?

What is the meaning of the score?

Blast output


```
    Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1:
```



```
    Neighboring words threshold: 13
Window for multiple hits: 40
```


Questions after the Blast search

Questions:
How are the hits identified?
What is the meaning of the score?

> Observe \& Practice: Scoring the similarity between two sequences.

How to measure the similarity between two sequences

Q: which one is a better match to the query ?
Query: M A T W L
Seq_A: M A T P P
Seq_B: M P P W I

Judging the match using "Scoring Matrix"
Q: which one is a better match to the query?

Query: M A T W L
Seg A: M A T P P
Score: 5 4 5-4-3 Total: 7

Query: M A T W L Seg B: M P P W I Score: 5-1-1 112 Total: 16

"Scoring Matrix" assigns a score to each pair of amino acids

$$
\begin{array}{r|rrrrrrrrr}
& \text { A } & \text { S } & \text { T } & \text { L } & \text { I } & \text { V } & \text { K } & \text { D } & \ldots
\end{array}
$$

BLOSUM-62

BLOSUM - Blocks Substitution Matrices

Block: very well conserved region of a protein family. perform the same (similar) function.
observed frequency of
ASTDEFT SALEDFT

Score $(a 1 / a 2)=2 * \log 2$
ASIDDYI
predicated frequency
of a1/a2
ASIDEFY
ASIDEFY

AA:	6
AS:	4
AT:	0

BLOSUM - Blocks Substitution Matrices

Block: very well conserved region of a protein family. perform the same (similar) function.

ASLDEEL		C	observed		pre
ASLEDFL		>0	frequency of	>	frequency 0
ASLDDYL			1/a2		a1/a2
SALEFFT	$(\mathrm{a} 1 / \mathrm{a} 2)$				
ASLDDYL			observed		predicated
SALEEFL		<0	frequency of	$<$	frequency of
			a1/a2		a1/a2

BLOSUM - Blocks Substitution Matrices

Block: very well conserved region of a protein family. perform the same (similar) function.

ASLDEFL ASLEDFL

ASLDDYI SALEEFL

ASLDDYI SALEEFL
...
predicated
frequency of

$$
\mathbf{L} / \mathbf{I} \text { i.e: } 0.1^{*} 0.1=0.01
$$

Substitution of L/I is common in
conserved sequences

BLOSUM - Blocks Substitution Matrices

Block: very well conserved region of a protein family. perform the same (similar) function.

ASLDEFL ASLEDFL

ASLDDYI SALEEFL

ASLDDYI SALEEFL

Score $(\mathrm{L} / \mathrm{K})<0$
predicated
frequency of
L/K

$$
\text { i.e: } 0.1^{*} 0.1=0.01
$$

Substitution of L/K is rare in conserved sequences
"Scoring Matrix" assigns a score to each pair of amino acids

BLOSUM-62

Scoring matrix -BLOSUM 62

R

BLOSUM - Blocks Substitution Matrices

-- Clustering threshold

BLOSUM 90 - Blocks with >=90\% identity are counted as one to compute the substitution score

BLOSUM 62

BLOSUM 30 - Blocks with >= 30% identity are counted as one to compute the substitution score

BLOSUM - Blocks Substitution Matrices -- Clustering threshold

ASLDEEL
ASLDEFL ASLDEFL

SALEEFL ASLDDYL SALEEFL TAIQNYV ATVNQFI

ASLDEFL
SALEEFL
ASLDDYL \quad BLOSUM 90
SALEEFL
TAIQNYV
AIVNQEI

SALEEEFL*
TAIQNYV
ATVNQEI

Comparison of Blosum matrixes

A R N	D		C	0	E	G	H	I	L	K	M	E
L $-2 \quad-3-4$ Blosum 90	-5	-2			-4	-5	-4	1	5	-3	2	0
L $-1 \quad-2 \quad-3$ Blosum 62	-4						-3	2	4	-2	2	0
L -1 -2 -2	-1			-2			-1	2	4	-2	2	2
Blosum 30												

Which substitution matrix will you use to identify a distant ortholog?

a.) Blosum 40
b.) Blosum 60
c.) Blosum 90

Why BLAST uses BLOSUM62 as the Default.

Proc Natl Acad Sci U S A. 1992 Nov 15; 89(22): 10915-10919.
doi: 10.1073/pnas.89.22.10915
Amino acid substitution matrices from protein blocks.

Fig. 3. Searching performance of programs using members of the guanine nucleotide-binding protein-coupled receptor family as queries and matrices from the BLOSUM and PAM series scaled in half-bits (11). Removal of this family from the blocks data base led to a nearly identical matrix with similar performance. Matrices represented (left to right) are blosum (BL) $30,35,40,45,50,55,60,62,65,70,75$, 80,85 , and 90 and PAM (P) $400,310,250,220,200,160,150,140,120$, 110, and 100. The average numbers of true positive Swiss-Prot entries missed are shown for LSHR\$RAT, RTA\$RAT, and UL33\$HCMVA versus Swiss-Prot 20. Results using blast and FASTA or SSEARCH (S-W) are not comparable to each other, since different detection criteria were used for the three programs.

Finding the best alignment = Get the highest score

The consideration on whether to open/extend a gap is weighed by its effect on the total score of the alignment.

Optimization - Dynamic programming

Effect of matrices on Local Alignment

Observe: effect of matrices on the outcome of local alignment

First name initial > L -- Align seq1 and seq 2 with "blosum62"

Others -- Align seq1 and seq 2 with "blosum35"

Effect of matrices on Local Alignment

Score: 156 at (seq1)[10..36] : (seq2) [64..90]
10 EPTEVFMDLWPEDHSNWQELSPLEPSD \|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|ll

Blosum 62:
P/H:-2
L/M: 2
64 EPTEVFMDLWPEDHSNWQELSPLEPSD
Score: 206 at (seq1) [10..38] : (seq2) [64..92]
10 EPTEVFMDLWPEDHSNWQELSPLEPSDPL

64 EPTEVFMDLWPEDHSNWQELSPLEPSDHM
Blosum 35:
P/H:-1
L/M: 3

Introducing a gap

Q: MA T W LI.
A: MA WT V A.
Scr: 5 4 4 -2 -2 1-1 Total: 5

Q: MA T W LI. A: MA - WT V .

Scr:5 4 -? 11 -1 3

$$
\text { Total = } 22 \text { - ? }
$$

Blosum 62:
Gap openning: -6~-15
Gap Extension: -2 ~ -6

Effect of gap penalty on Local Alignment

Set matrix to "blosum62"

Column 1,3,5, align seq1 and seq2 with "gap=15, ext=3,"

Column 2 and 4, align seq1 and seq2 with "gap=5, ext=1"

Effect of gap penalty on Local Alignment

Blosum 62
Score: 156 at (seq1) [10..36] : Gap: -15 (seq2) [64..90]
10 EPTEVFMDLWPEDHSNWQELSPLEPSD

64 EPTEVFMDLWPEDHSNWQELSPLEPSD
Gap: -5 Ex:-1

Score: 161 at (seq1) [2..36] : (seq2) [53..90]
2 ASTV----TSCLEPTEVFMDLWPEDHSNWQELSPLEPSD

53 ASSVSVGATEA-EPTEVFMDLWPEDHSNWQELSPLEPSD

