1.) Where should I search?

NCBI

Has pretty much every thing that has been available for some time

Genome projects

Has the updated information (DNA sequence as well as analysis result)

- 2.) Which sequence should I use as the query?
 - Protein
 - cDNA
 - Genomic

Overview of homology search strategy 2.) Which sequence should I use as the query? cDNA (BlastN)

```
Score
                                                                            E
Sequences producing significant alignments:
                                                                   (bits) Value
gnl|dmel|FBtr0082091
                      type=mRNA; loc=3R:complement(5531512.....
                                                                          0.87
gnl|dmel|FBtr0085316
                      type=mRNA; loc=3R:complement(24562831....
                                                                     38
                                                                          0.87
anl|dmel|FBtr0071092
                      type=mRNA; loc=X:7757325..7762681; nam...
                                                                     36
                                                                          3.4
                                                                          3.4
gnl|dmel|FBtr0085763
                      type=mRNA; loc=3R:27088887..27089539; ...
                                                                          3.4
anl|dmel|FBtr0087330
                      type=mRNA; loc=2R:11021527..11023229; ...
                                                                     36
                                                                          3.4
gnl|dmel|FBtr0079508
                      type=mRNA; loc=2L:complement(7717052.....
                                                                     36
qnl|dmel|FBtr0079312
                      type=mRNA; loc=2L:complement(6686819.....
                                                                          3.4
                                                                     36
```

Protein (TblastN)

```
Score E
Sequences producing significant alignments:

gnl|dmel|FBtr0086108 type=mRNA; loc=2R:2160554..2164644; na... 53 3e-07
gnl|dmel|FBtr0088077 type=mRNA; loc=2R:7195380..7204666; na... 47 1e-05
gnl|dmel|FBtr0076455 type=mRNA; loc=3L:9378742..9380127; na... 28 9.2
```

2.) Which sequence should I use as the query?

Protein v.s cDNA

query: S A L target: S A L

query: TCT GCA TTG target: AGC GCT CTA

Base level identity

Protein: 100% Protein: ~5%

Nucleotide: 33% Nucleotide: ~ 25%

Searching at the protein level is much more sensitive

2.) Which sequence should I use as the query?

If you want to identify similar feature at the DNA level. Be Cautious with genomic sequence initiated search

- Low complexity region
- repeats

- 5.) How to optimize the search?
 - Scoring matrices
 - Gap penalty
 - Expectation / cut off

- 8.) How to align (compare) my query and the hits?
 - Global alignment
 - Local alignment

ClustalW/ClustalX

Scoring matrix –BLOSUM 62

	С	S	Т	P	A	G	N	D	E	0	Н	R	К	М	T	E	V	F	Y	W	
C	9																				С
5		4																			3
1	4																				
Ė	13		+ + 0																		<u>.</u>
Ģ	 EG 3	Ō		-5		Ġ.															OMERNAME O
11		1	Ď	-2	-2	Þ	Ě														
D	+3	0		- 1		- 1	1	Ġ.													
E	14 13			+ 4	<u> </u>	+2 -2	0 5	<u>.</u>	2												
Q H	-3:	- I	-2	<u> </u>	-2	-2	- 1	-1	- 0	0											H
Ŧ	~ 3	41	-1	+2	+1	-2	Ŭ.	-2	Ð	1	O.	5									X
	-3	9	-1	-1	-1	-2	. 0	-1	1	1		2	5								
М	10.00	-1	-1	-2	- 1	-3	-2	-3	-2	0	-2	-1	-1	5							M
E		-2 -5		-3	-1 -1	-4 -4	-3 -3	-3 -4	-3 -3	-3 -2	-3 -3	-3 -2	-3 -2	1 2	4 2	4					Ĺ
v		-2	ō	-2	ō	-3	-3	-3	-2	-2	_ 3	-3	-2	1	3	ī	4				v
F	-2	-2	-2	-4	-2	-3	-3	-3	+3	- 3	-1	-3	-3	0	Ø	0	-1	đ			F
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		¥
H	# Z	#3	#2	<u>+4</u>	+3	<u>+2</u>	-4	<u>4</u>	+3	+ <u>2</u>	+2	#3	+3	+1	+3	<u>+2</u>	#3	<u> </u>	2	11	W
	С	S	T	P	A	G	N	D	E	<u>Q</u>	H	R	K	M	I	L	V	F	Y	W	

Limitations of Generic Scoring Matrix

- Short specific pattern
- Position specific information.

Binary patterns for protein and DNA

Examples:

Caspase recognition site:

[EDQN] X [^RKH] D [ASP]

Observe: Search for potential caspase recognition sites with BaGua

Why BLAST may fail to find the real orthologue?

Position – specific information about conserved domains is **IGNORED** in single sequence –initiated search

BID_	MOUSE
BAD	MOUSE
BAK	MOUSE
BAXB	HUMAN
BimS	
HRK	HUMAN
Egl-	1

```
SESQEEIIHN IARHLAQIGDEM DHNIQPTLVR
APPNLWAAQR YGRELRRMSDEF EGSFKGLPRP
PLEPNSILGQ VGRQLALIGDDI NRRYDTEFQN
PVPQDASTKK LSECLKRIGDEL DSNMELQRMI
EPEDLRPEIR IAQELRRIGDEF NETYTRRVFA
LGLRSSAAQL TAARLKALGDEL HQRTMWRRRA
DSEISSIGYE IGSKLAAMCDDF DAQMMSYSAH
```

```
BID MOUSE
```

SESQEEIIHN IARHLAQIGDEM DHNIQPTLVR sequence X SESSELLHN SAGHAAQLFDSM RLDIGSTAHR sequence Y PGLKSSAANI LSQQLKGIGDDL HQRMMSYSAH

Basic concept of motif identification 2.

How do we represent the position specific preference?

```
BID MOUSE I A R H
                      L A Q I G D E M
    BAD MOUSE Y G R E L R R M S D E F
               V G R Q
                      L A L I G D D I
    BAK MOUSE
    BAXB HUMAN L S E C L
                        KRIGDEL
    BimS I A Q E L
                        RRIGDE
    HRK HUMAN T A A R
                      L
                        K A L G D E L
              IGS
                    K
                        A A M
                      L
    Eql-1
                              [GSC]
             [HEQCRK]
Binary pattern:
             X
             [^ILMFV]
```

Basic concept of motif identification 2.

How do we represent the position specific preference?

Statistical representation

G: $5 \rightarrow 71\%$

S: 1 -> 14 %

C: 1 -> 14 %

Protein motif /domain

- Structural unit
- Functional unit
- Signature of protein family

How are they defined?

Practice: Using MEME to identify motifs shared by a set of proteins

- 1. Load the sequence file to MEME.
- 2. Make sure you input your email address for results.

Representation of positional information in specific motif

Binary patterns:

M-C-N-S-S-C-[MV]-G-G-M-N-R-R.

Positional matrix:

```
-2.269 -5.001 -4.568 -2.418 -4.589 -3.879
                                            1.971 -4.330
                                                           1.477 -1.241 -4.221 -4.590 -4.097 -4.293 -3.808
-2.453 -1.804 -1.746 -3.528
                              2.539
                                     1.544 -3.362 -1.440 -3.391 -2.490 -1.435 -3.076 -1.571
                                                                                                 0.501
                                                                                                        0.201 - 1.930 - 2.707
                0.699 -2.938 -2.427 -0.936 -2.632 -0.095
                                                            1.147 -1.684 -1.111 -2.531
                                                                                         1.174
                                                                                                 2.105
                                                                                                        1.057 -1.400 -2.255
               -0.576 -2.756 -2.212
                                      1.686 -2.576
                                                     0.951 - 2.438
                                                                 -1.544
                                                                           0.857 - 2.301
                                                                                         1.891
               -4.313 -1.529 -5.006 -3.577
                                             0.429 -4.094
                                                            3.154
                                                                 -0.121 -4.440 -4.199
                                                                                        -3.292
                                                                                               -3.662
-3.197 -2.285 -1.533 -3.721 -2.945
                                      1.815 -3.235
                                                    0.067
                                                          -3.061 -2.259 -1.680 -3.231
                                                                                         1.195
                                                                                                2.287
                                                                                                       -2.009
        0.576 -0.734 -2.072 -2.234 -0.851
                                            0.436
                                                   -0.548
                                                          -0.129 -0.974 -1.039 -2.318
                                                                                        2.368
                                                                                                 0.667 -1.135
                      -1.535 -3.463
                                    -2.571
                                             3.060
                                                   -3.008
                                                            0.262
                                                                   1.566
                                                                                 -3.575
                                                                                         0.450
                                                                                                -3.001
```

Scoring sequence based on Model

```
Seq: A S L D E L G D E
      1 2 3 4
   A 1 0-4.
                   score (a) position 1 =
                   s(A/1) + s(S/2) + s(L/3) +
   C 2 5-1 .
                   s(D/4)
   D 1-3 9 .
```

An example of position specific matrix

Observe: Search for proteins encodes IL6 motif#2 in Dm genome.

Practice: motif analysis of protein sequence using ScanProsite and Pfam

- 1. Open two taps for Pfam, input one of the Blast hits and one candidate TNF to each data window.
- 2. Compare the results

Scan protein for identified motifs

- A service provided by major motif databases such as Prosite,, Pfam, Block, etc.
- The presence of signature motif(s) is often indicative of structural and functional property.
- High frequency motifs may only have suggestive value.

What is the possible function of my protein? Which family my protein belongs to? -- Profile databases

- Pfam (http://pfam.xfam.org/)
- Prosite (https://prosite.expasy.org/)
- InterPro (http://www.ebi.ac.uk/interpro/)

Scan protein for functional motifs

Practice: Scan the top hits from BLAST or Motif-based search in Prosite.

- The presence of motif is a strong indication of potential functional and regulatory mechanisms.
- How to interpret short and high frequency motifs?

Identifying shared motifs using MEME -Multiple EM for Motif Elicitation

- Identifies statistically significant motif(s) in a set of sequences.
- Motifs shared by proteins.
 - Protein family.
 - Mediate interaction between different protein.
- Motifs shared by DNA sequences binding to certain transcription factor (ChIP-Seq).